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ABSTRACT 

North Carolina is the uppermost recognized range for the American Alligator, but a 

warming climate may push their range further northward. This project aims to automate 

traditional alligator eyeshine surveys by using uncrewed surface vessels (USVs). Because the 

environments that alligators are found in can be hazardous, including the alligators themselves, I 

(1) developed a theoretical command-and-control framework to coordinate multiple USVs in a 

way that is resilient to individual malfunction and (2) constructed small, inexpensive, prototype 

USVs to implement this framework using Raspberry Pi computers and Arduino microcontrollers. 

The proposed framework addresses partitioning of complex water bodies & coordinating 

multiple USVs with unreliable communication networks to effectively survey the study area. 

Although motivated by alligator surveys, the project is generalizable to other species or 

environments. 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

 The American Alligator (Alligator mississippiensis) is not just a charismatic megafauna, 

but a keystone species in the ecosystems it resides in (Mazzotti et al., 2009). As a large predator, 

it regulates the populations of other animals via top-down control, in turn protecting the plants 

that form the basis of ecosystems. The deep holes that they dig, called gator holes, serve as water 

reservoirs for other animals and plants during droughts (American alligator). They reside mostly 

in freshwater and brackish water bodies like lakes, rivers, and marshes, but have been observed 

in coastal saltwater, despite not being physiologically adapted for it like crocodiles (Alligator, 

American).  

North Carolina represents the northernmost boundary for the American Alligator in the 

continental U.S. Alligators are more common in southern North Carolina than northern, and their 

range appears to be dictated by temperature; alligators in North Carolina grow more slowly and 

reproduce less often than those further south (Alligator, American). The survival challenges that 

North Carolina alligators face is visible in their populations. A few thousand alligators are 

thought to reside in North Carolina, whereas over 100,000 are reported in South Carolina, just 

below North Carolina (Moore, 2024; Alligator Hunting Season Report, 2023). 

 As the effects of climate change influence global temperatures, warming year-round 

temperatures and, in particular, less harsh winters imply both greater survivability odds for 

alligators within their current range and also access to new areas that were previously 

uninhabitable. A study by Ryberg and Lawing, which modeled current alligator distributions as 

well as future distributions under various climate projections, substantiates this idea. They found 

that alligator ranges are expected to shift northward---alligators will move northward into North 

Carolina but also lose habitat in Florida due to prohibitively warm temperatures. Ryberg and 



Lawing also caution that, although alligators as a species have survived climatic shifts 

throughout history, they did so by adjusting their ranges, not by adapting to these shifts. The time 

scale on which temperatures are expected to rise is orders of magnitude faster than in the past; it 

is unclear whether alligator populations will be able to respond in time to the temperature 

changes that are projected to occur in the upcoming decades (Ryberg & Lawing, 2018). 

 Improved alligator surveying and monitoring methods are thus necessary for both areas 

where alligator presence is expected to increase and those expected to decrease. North Carolina 

is especially relevant as a state with relatively little alligator presence up to the present day. 

Alligator management resides in a strange balance. Although alligators themselves are no longer 

a threatened species, having recovered from a history of hunting, they are federally classified as 

“threatened due to similarity of appearance” to the American crocodile (Crocodylus acutus) 

(Endangered and Threatened…, 2019). In North Carolina, however, very limited hunting is 

allowed by permit in specific counties as a means of population reduction (Alligator, American). 

These permits further necessitate proper surveying to ensure adequate and responsible population 

management. 

 There are many ways of surveying alligators, the foremost being aerial nest surveys and 

spotlight surveys. Aerial nest surveys are the best way of establishing an accurate population 

estimate, where the number of nests is a proxy for the number of alligators in an area. Spotlight 

surveys leverage the fact that alligator eyes reflect light, making alligators easy to detect at 

nighttime, equipped with a light source. Spotlight surveys serve to establish a minimum 

population; when alligator lengths are collected along with raw counts, the age structure of the 

population can also be estimated (Woodward & Moore; Managing Alligator Populations; 

Balkcom et al.). 



 Although aerial drones have been used recently to conduct aerial surveys of crocodilians, 

this project aims to create a boat-based system to automate typical spotlight surveys (Scarpa & 

Piña, 2019). Drones have limited use in areas with high vegetation coverage, which compose 

some, although not all, of alligator habitat. By using uncrewed surface vessels (USVs), there is 

the potential to survey areas inaccessible from above.  

 Alligators, however, are documented to attack drones, including USVs (Price, 2023). This 

project, in addition to developing a prototype USV for conducting these surveys autonomously, 

aims to create a protocol to coordinate multiple robots to conduct a survey at once. The main 

priorities of this multi-agent system are (1) parallelization and (2) redundancy. In ideal 

circumstances, multiple robots surveying at once will complete a given area quicker; this speed 

is relevant when considering that these surveys must practically occur at nighttime. If one or 

more USVs are destroyed, the remaining USVs can still complete the survey area. 

 The use of multiple drones or agents to complete surveys is not novel. There is plenty of 

interesting work on theoretically optimal ways to coordinate the movements of multiple agents at 

once. However, there is little work that addresses the reality of surveying in these adverse 

environments; it is not possible to solve for optimal paths in advance, because the destruction of 

a robot mid-survey would still result in a nonoptimal survey. Furthermore, it is also difficult to 

calculate optimal paths in real time, because a potentially disconnected communication network 

(due to destroyed robots or an environment that disrupts radio signals) means that, although 

possible, it is not guaranteed for a single USV or base station to know every other USV’s 

position and other state variables, such as battery life, at a given time. This project thus aims to 

create a movement and communication protocol that, while not perfectly optimal, serves as a 

pragmatic basis for completing actual multi-agent surveys in hazardous environments. 



 Furthermore, the project recognizes that cost should also be a factor when creating USVs 

that are ultimately expendable. Because there is no guarantee for a single robot to make it home 

and in the interest of still getting usable data from the area it can survey before failure, this 

project aims to embed as much computing as possible onto the USVs themselves to complete in 

real-time. In the age of cloud computing and AI driven by large language models, this project 

instead necessitates computationally inexpensive code, to both be run in real-time and on cheap 

single board computers such as the Raspberry Pi. 

METHODS & MATERIALS 

Component List 

 In addition to PLA filament, access to a 3D printer, and access to a soldering iron, the 

following components are used to construct the USV prototype: 

- Raspberry Pi 4 Model B, 2GB RAM 

- Adafruit Feather RP2040 with RFM95 LoRa Radio 

- 915Mhz Antenna 

- uFL to SMA connector 

- Adafruit Triple-axis Magnetometer MMC5603 

- Adafruit Ultimate GPS 

- Raspberry Pi Camera 3 (Wide NOIR) 

- Raspberry Pi Camera Cable 

- Generic Brushless DC drone motor 

- Electronic Speed Controller (ESC) compatible with the above motor 

- Generic drone propeller compatible with the motor 

- SG90 Servo motor 

- Blomiky 9.6V 2000mAH NiMH battery 

- Tamiya to bare wire connector 

- UBEC Step-down converter (5V at 3A) 



- OVONIC 3S LiPo Battery 5200mAh 11.1V 

- Many multicolor jumper wires 

- Electrical tape 

- ½ lb. of aluminum pellets or other similar material 

- 2 USB-A to USB-C adapters 

- Flex Seal Liquid Rubber Sealant Coating 

- 4-pin JST connector 

- Singular skateboard bearing 

- Superglue 

USV Construction 

 

 The USV itself is a catamaran supported by two deep-v hulls (A). This design choice was 

motivated by the need for having an elevated camera (B) for imaging, and the catamaran 

construction allows for high stability and limited roll even if a large amount of the boat is out of 

the water. Not only is the camera high above the water, but the choice to put the propeller above 

water means even more of the USV will be above the water and further motivates the stability of 

the catamaran construction. The choice to use an air propeller instead of a water propeller is 



manifold: standard drone motors are cheap and readily available, less exposure to water extends 

their lifetimes, and having the motor above the water prevents it from becoming fouled with 

underwater plants or the propeller hitting the bottom when in shallow areas. The motor is 

mounted onto a piece that is glued to a servo on top and pressed into a ball bearing on the 

bottom. The servo motor controls the angle of this piece and thus the angle of the motor. The 

combined servo and motor allow the boat to be able to both move and control direction. 

The frame for the USV was modeled using the online software TinkerCAD; although not 

the most advanced software, it allowed to rapid iteration. The models for the motor mount and 

the camera mount in specific were borrowed from pre-existing, open source models by 

Thingiverse user @BuildSomeStuff and Printables user @DocWeebl, respectively (Raspberry pi 

camera…; Thingiverse.com, RC airboat by buildsomestuff). 

The model is then 3D printed piece by piece using PLA filament. Aside from attaching 

the moving arm of the servo and the BLDC motor, every part can be attached using superglue or 

a similar glue. 

 The motor and batteries being in the main box above the water raises the center of mass, 

so approximately a ¼ pound of aluminum pellets are added to each hull to lower the center of 

mass closer to the waterline. Because 3D printed PLA is watertight, Flex Seal Liquid Rubber 

Sealant Coating is sprayed thoroughly onto the fully constructed hull to ensure the submerged 

pieces of the USV remain watertight. Although the boat lacks a true keel, the ridge at the very 

bottom of the hull, which stretches across the entire hull, serves the similar purpose of preventing 

drifting and keeping the USV on course. 

 



Electronic Wiring 

 

 The Raspberry Pi serves as the flight controller and as the onboard computer, reading 

values and interpreting values from the GPS and magnetometer, receiving and sending packets 

via serial with the RP2040-driven LoRa radio, and taking and analyzing images using the 

camera. The power supply for the motors are separate from the rest of the electronics. This is 

because the BLDC motor requires lots of power and at sporadic intervals, particularly when the 

thrust being set by the Raspberry Pi changes drastically over short periods. In contrast, the rest of 

the electrical components require less power but much more steadily. The LiPo battery thus 

powers the motors whereas a less powerful but reliable NiMH battery powers the Raspberry Pi 

and all the components it connects to. The wiring of all the grounds are interchangeable with 

other grounds, but since the magnetometer uses I2C and the motors use PWM, that wiring is not. 



 A script publically available on GitHub by user nliaudat was used to calibrate the 

magnetometer to correct for hard and soft iron errors (nliaudat, Ellipsoid fitting using python 

numpy to calibrate magnetometers). 

Preprocessing Algorithms 

 
The Duke Reclamation Pond traced into a simpler polygon 

 Survey water bodies can be traced into two-dimensional polygons for use in the 

preprocessing steps. 

 Lloyd’s algorithm, which is a clustering algorithm that is also used for creating partitions, 

is applied with a target number of n partitions passed in as a parameter. This algorithm functions 

by iteratively calculating the Voronoi diagram for a given set of points, shifting each point 

towards the centroid of its respective Voronoi cell, and recalculating the Voronoi diagram for the 

newly positioned points. The number of iterations is also passed in as a parameter to Lloyd’s 

algorithm. In practice, i=100 was used; greater numbers did not result in much change. Because 

the Voronoi diagram creates a set of cells, where each cell ci represents the portion of the overall 



space that is closest to a given point pi, an emergent property is that the polygons are 

consequently of roughly even sizing and typically convex (Bozkaya et al., 2023). In practice, this 

can be done using Python’s shapely package, particularly the voronoi_diagram method 

(Shapely). 

       
Three different outputs of Lloyd’s Algorithm with the same starting conditions (10 points, 100 iterations) 

 

 Although Lloyd’s algorithm can create a valid partition, it is not guaranteed to, because a 

desired property of each of the cells in the partition being “strongly-visible.” Strong-visibility is 

when, for a cell ci, there is at least one point that can “see” (have an unobstructed, direct path to) 

the entirety of the permiter of ci. By extension, this means that this point can “see” every other 

point in the polygon. For this purpose, it is important that the centroid of the cell is one of the 

points that is strongly visible. This is relevant for the pathfinding logic discussed later. 

 Strong-visibility can be guaranteed by, for each cell, calculating which parts of the cell 

the centroid cannot “see.” If the centroid can see everything, then there is no change needed. 

Else, for each region, the centroid cannot see, as there might be multiple, attempt to merge them 

into an adjacent cell, only actually merging if that region can be added while keeping the 

adjacent cell strongly-visible still. If this is not possible for any adjacent cell, the region is turned 

into its own new cell.  



              
These two figures display the nonvisible portions of cells in red (left) and the when they are 

merged with other cells or split into their own (right) 

 

 The centroids of the final output of Lloyd’s algorithm can be passed further into the next 

step, which is to construct a navigation mesh for the robots to be able to easier pathfind around 

the survey region. This algorithm simply takes every possible pair of centroids and, for each pair, 

creates a line between those two points and checks to see whether this line is contained within 

the overall survey polygon or not. If the line is contained, then it means that there is an 

unobstructed path between the two points and this path should be included in the navigation 

mesh, with the length of the line. If not, then the path is obstructed and so is not a valid path to 

be included. This step is also done using the shapely package and, optionally, the buffer 

method can be used to shrink in order to not count paths that might geometrically be valid but, in 

practice, go unacceptably close to the shoreline, as there might be concerns with depth or other 

obstacles too close to shore. The output of this algorithm can be used to create a weighted, 

undirected graph. It is not, however, guaranteed to create a connected graph, wherein every node 

is reachable from every other node, which is required to create a usable navigation mesh. 

 



 Thus, an additional step is required. For each pair of cells in the overall diagram, first 

check to see whether they are adjacent (this can be done in shapely by taking the union of the 

two cells and checking to see whether it is type Polygon [adjacent] or MultiPolygon [not 

adjacent]). If they are adjacent, then find the midpoint of the edge that they share and connect 

their centroids via that midpoint. A simply pseudocode for the above algorithm, where : 

constructNavigationMesh(area, centroids, cells): 

    let n = size of list centroids 

    create an empty set of edges E 

    create an empty set of nodes V 

    add each centroid in centroids to V as new nodes 

    for i in 0 to n 

        for j in i+1 to n 

            path = line between centroids[i] and centroids[j] 

            if area contains path 

                dist = euclidean distance of path 

                add path as an edge to E with a weight of dist 

            else if cells[i] and cells[j] are adjacent 

                shared_edge = intersection of cells[i] and cells[j] 

                midpoint = midpoint of line shared_edge 

                add midpoint to V as a new node 

                dist_i = euclidean distance between centroids[i] and midpoint 

                dist_j = euclidean distance between centroids[j] and midpoint 

                add edge btwn centroids[i] and midpoint to E w/ weight dist_i 

                add edge btwn centroids[j] and midpoint to E w/ weight dist_j 

            end if 

        end for 

    end for 

    return V, E 

 

 



 

Full navigation mesh 

The graph output from this algorithm is suited for Djiktra’s Algorithm, which finds the 

optimal path between two nodes in a weighted, undirected graph (Huang et al., 2009). Although 

more complicated algorithms such as A* could be applied, the number of nodes and edges is, in a 

real-world survey, unlikely to be large enough such that the performance boost is worth the 

added complexity. The importance of the strong-visibility can now be appreciated. Because an 

unobstructed, direct path is guaranteed between the centroid of cell and any other point within 

that cell and there is also a guaranteed path, reasonably efficient path between the centroids of 

every cell, then there is a guaranteed unobstructed path between every point in the entire survey 

area. A path between a random pointi in celli and a random pointj in cellj is thus: 

𝑝𝑜𝑖𝑛𝑡! → 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑! → 𝑝𝑎𝑡ℎ	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑! 	𝑎𝑛𝑑	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑" 	→ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑" → 𝑝𝑜𝑖𝑛𝑡" 

 Survey paths for each cell can be calculated algorithmically by taking shrinking in every 

direction by buffer amount b (amount, not percentage). Then, longest edge of each cell is found. 

The cell is rotated such that this longest edge is horizontal, and then 0#!$%&	()	*(%+%,$	-,..
/

1 transect 

lines are drawn vertically, or perpendicular to the original longest edge, at b intervals. The 

transect cells are then connected in a lawnmower pattern. 



The final step of preprocessing is to split the overall partitions into u groups, where u is 

the number of USVs available to conduct the survey. Currently, this is done using the Fluid 

Communities algorithm implemented by the NetworkX asyn_fluidc method. This 

algorithm is favored because it takes the number of target groups  (or communities) as a 

parameter, unlike other community-finding algorithms where the number of output communities 

is not something that can be specified. Each USV is assigned as the “leader” of one of the 

communities at random. 

Community-finding algorithms are used so that, ideally, the elements in a given group are 

all close together, meaning that, once the leader of that grouping has completed a survey of one 

of the elements in its group, it will be very close to next element to do a survey of. 

 
Cells split evenly among three USVs  

Mesh Radio & Communication Protocol 

 The RP2040 RFM95 runs on a script written in C++ (Getting Started with Arduino). The 

code heavily leverages the RadioHead Packet Radio library by AirSpayce. By using specifically 

the RHMesh class, the USV system can form a mesh network. The mesh network means that 



packets can be sent across the radios of multiple intermediary USV to finally reach the 

destination, even if the sender and receiver are themselves out of range. Furthermore, the route 

between the sender and receiver is automatically discovered and, if the network changes the 

route is no longer valid, then a new route can be discovered (Radiohead: …). This packet radio 

can achieve long distance of multiple kilometers, but with the tradeoff being very small 

maximum packet sizes of 252 bytes (Adafruit RFM69HCW and RFM9X Lora Packet Radio ...). 

These radios can therefore not feasibly transmit audio or video, but can be used to send latitude, 

longitude, heading, and other information about a USV’s current state, as well as request 

instructions or respond to requests. 

 When a USV sends a broadcast out, one of the variables it includes in the packet is its 

current tally of surveyed partitions, as list completed where completed[i] = True means 

that celli has been surveyed and completed[i] = False means it has not yet been surveyed. 

When another USV receives this broadcast, it compares its list with the list it receives. If there 

are any cells in the received list that are marked as True which the USV has as False, it sets 

its value to True, which is just an OR operation. This is a kind of gossip protocol, whereby the 

peer-to-peer communication of information leads to a more unified agreement of the state of a 

system (GeeksforGeeks, 2024). 

 The leader designation algorithm described prior is critical to the communication and 

coordination protocol. A USV surveys all the partitions it is a leader of without needing to 

communicate with other robots, although it listens to other USV’s broadcasts that it is in range of 

to keep track of the current survey state. When there are no more cells in the group a USV is the 

leader of, it moves to an adjacent group area and sends a request to the leader of that group to 

survey a polygon. The leader responds affirmative if the polygon has polygon has not been 



surveyed along with an authority number. If there is no response at all, the requesting USV 

assumes that something happened with the original leader, and assumes leadership of the group, 

but with a lower authority number than the original leader. This way, if a third USV requests to 

survey the group and the original leader comes back in range or online, the third USV will 

receive two responses, one from the original leader and one from the USV that assumed new 

leadership. But, the third USV can tiebreak the potentially conflicting instructions based on the 

authority number associated with each response. 

Control Loop 

 The main script that the Raspberry Pi runs is written in Python. The autonomous 

pathfinding logic of the Raspberry Pi, at its core, is a simple loop in which, the script first checks 

the radio for any incoming messages and parses them. The script reads the current GPS and 

magnetometer values. It checks to see whether the USV is within an acceptable threshold 

distance of the current waypoint. If it is, then it considers the waypoint as having been reached 

and sets the current waypoint to the next waypoint in the queue. The script then sends any 

messages as well, either a response or to broadcast its status if enough time since the last 

broadcast has passed. The script then checks the arm state to determine whether the motors 

should be running. If the USV is armed, the script calculates the heading error, which is 

difference between the current heading and the actual angle between the USV’s position and the 

next waypoint. It maps this error to a servo angle, to turn the boat towards the necessary heading. 

The servo angle is then mapped to a thrust value, where the straighter the motor, the stronger the 

thrust. The more extreme the turn, the weaker the thrust, to prevent rapid movement and 

overcorrection. Although thrust PWM values range between 1000-2000 microseconds (um), the 



code sets the max thrust to be 1300um, because larger values caused the propeller to fly off the 

motor. 

Ground Control Software 

 Although pre-existing softwares exist to control USVs and other autonomous vehicles, 

such as QGroundControl and ArduPilot, they rely on the MavLink communication software 

(QGC; ArduPilot). 

Furthermore, neither software supports monitoring of multiple autonomous vehicles at once. To 

more flexibly communicate with the Raspberry Pi, two softwares were written to be lightweight, 

ground control stations for interfacing with the USV. One was written using React and Electron, 

and sends and receives information via a LoRa packet radio, which must be plugged into the 

computer running the software. In order to prevent clogging the network and dropping packets, 

USVs communicating via LoRa broadcast their status every ten seconds. This information is then 

displayed on the software. 



 
LoRa-based custom ground control software 

A second software was also written using Neutralino and vanilla Javascript to create a 

second application to both set autonomous waypoints, as well as control the USV manually, by 

sending data over a WiFi network using HTTP requests to a Python Flask server endpoint 

running on the USV’s Raspberry Pi. In practice, the WiFi network can be an access point hosted 

by the Raspberry Pi itself. The much higher bandwidth of WiFi allows data to be sent much more 

frequently, which makes manual control feasible and is useful for debugging, as the USV state 

can be observed in real-time.  



Wi-Fi-based ground control software 

 

RESULTS 

The USV handles well in the water. When the servo is rotated a full 90 degrees in either 

direction, the USV is able to rotate itself in place. At the most powerful thrust setting, the prow 

of both hulls began to tilt downward and go beneath the water. In testing, this did not cause the 

USV to flip or tip over, but there may still be a risk of that occurring if the boat were to go faster. 

Aside from this issue, the single drone motor is very capable of providing enough thrust to move 

at an adequate survey speed of 1-2 meters per second.  



The USV is successfully able to drive itself autonomously via LoRa-sent instructions as 

well as drive manually using instructions sent over WiFi. Both programs are also able to monitor 

the USV’s position and log progress, although the WiFi-based one is much more useful for 

debugging and monitoring due to the much more frequent update rate. The WiFi range of the 

access point hosted by the Raspberry Pi is quite weak and cannot support a mesh network, which 

only makes it useful for testing single USVs fairly close to shore.  

 The magnetometer, when properly calibrated, also appears to function well and 

accurately. The GPS, however, can initially place the USV well but, when the USV begins 

moving, does not accurately update to the USV’s current position. This makes it difficult to 

further evaluate the ability of the USV prototype to conduct missions with multiple waypoints. In 

contrast to the LoRa antenna and the magnetometer, which are both isolated from the rest of the 

electronics, the GPS sits within the main box along with the rest of the electrical components. 

 Augmenting Lloyd’s algorithm to create strongly-visible cells is a tradeoff, in which the 

equality of polygon size is deprioritized in favor of strong-visibility. This is acceptable because 

there is no intrinsic reason for each cell to be of similar area. In contrast, it is important for a 

USV to be able to move between every point in a survey region. 

 

 

 

 

 



DISCUSSION & NEXT STEPS 

 The use of drones and other robots for studying animals and conducting surveys is on the 

rise. Aerial drones have seen a wide variety of usages for terrestrial and aquatic animals, and are 

often faster, less invasive, and sometimes cheaper than equivalent, alternative methods (Pedrazzi 

et al., 2025). In contrast, USVs have seen less practical use up to this point for wildlife surveys, 

because the angles provided by cameras are at a less useful angle for detecting obstacles and 

objects, although in the case of eyeshine surveys the low angle is more practical than those 

provided by drones (Huang et al., 2023). USVs also have the potential to enter environments 

impassible to aerial drones and, with weight being less of a constraint, can afford larger batteries 

and thus extended survey time compared to aerial drones. 

 Because the use case of USVs lie in more complex areas where drone flight is difficult, 

they will operate in areas where data transmission is less guaranteed. Autonomy is thus more 

important with these surveys, as is redundancy. This system serves as the basis for a 

computationally lightweight, cost-effective, and relatively easy-to-implement way to conduct 

autonomous surveys. Although the project was initially motivated by surveying alligators, the 

core of the project ultimately lies in the pragmatic communication and movement protocols, 

whose applications extend far beyond alligator surveys, and even the USV platform itself. 

 This project is not complete, and there are many potential next steps to further improve it. 

Overall, there was limited opportunity to test and validate the functionality of the USV. The lack 

of alligators in Durham made it impossible to take any pictures of alligators in the field, so it was 

not feasible to create an eye detection script. Making more USVs to test whether multiple can 

practically communicate with each other is another aspect to test. 



On the physical side of the project, an external and active antenna should be added to the 

GPS to get better GPS data or the GPS should be upgraded outright. To allow the USV to move 

efficiently at high speeds, more ballast should be added to the hulls and the hulls should be made 

larger to support the added weight of the ballast. 

On the preprocessing side, the current method of ensuring strongly-visible cells is fairly 

naïve and does not produce particularly elegant partitions. There is a need for a better way to 

guarantee strongly-visible survey cells while still being able to survey as much of the overall 

area as possible. There has been pre-existing work on a similar topic that adds a different step 

after Lloyd’s algorithm to partition a convex polygon into many convex polygons, but in this 

case the input is not guaranteed to be a convex polygon, so more work is needed (Campillo et al., 

2024). Another potential approach might could use a totally separate partitioning method, such as 

Delaunay triangulations, but it is unclear whether such methods would result in polygons suitable 

for creating transect surveys within. 

For the Raspberry Pi control loop, the current method for calculating the angle and thrust 

values, while functional, could be improved. A PID-type controller that accounts for more factors 

aside just heading error could allow the USV to more accurately follow the path, especially when 

facing adverse conditions like current and wind. 

The custom ground control software, while functional, has a lot of opportunity for further 

development. Specifically, there is a need to a ground control software that is able to control 

multiple surveying drones at once. This wireframe, while a useful way to monitor the prototype, 

could give more information than current location, next waypoint, and heading, such as overall 

path for each robot, as well as information about the overall mesh network topology. 

Furthermore, more commands could be issued to robots, such as return to launch or hold a 



location. The preprocessing steps currently done via a Python script could be incorporated into 

the ground control software, using the software as a GUI for the preprocessing steps.  

CONCLUSION 

 This project further represents many different aspects combined into one basic, yet 

functional, system. Each aspect has been carefully considered to be as inexpensive as possible 

while still preserving the core, required function. Each aspect remains distinct from the others 

and so can be improved or modified to serve a use case without requiring an overhaul of the 

entire system. The preprocessing algorithms can be expanded upon or redone without needing to 

change the radio, and the materials or layout of the frame can be upgraded without needing to 

change the code or electronics. In situations where cost is a barrier to entry for technologies, this 

project presents a low-cost robot with an easily acquired parts list. Furthermore, the redundancy 

aspect of this project, which is not typically seen in the context of wildlife surveys, opens the 

door for applying more autonomous surveys in more complex and hostile areas, where drone 

failure, while not optimal, does not compromise and survey and can be gracefully handled. 
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